8 The Case of Incomplete Markets:
Relating Risk Premiums to
Economic Fundamentals

As already mentioned, the risk neutral valuation (RNV} method is too good to be
true: It is not reasonable to consider thatany risky asset can be priced without some
knowledge of economic fundamentals such as supply and demand for consump-
tion goods, investment goods and savings. But to incorporate such fundamentals
one needs to model the behavior of consumers and investors toward risks. This
chapter starts by presenting the expected utility criterion, which solves the famous
St Petersburg paradox. This criterion can be very useful in several circumstances;
modeling insurance decisions by individuals (Section 8.2) or modeling equilib-
rium prices in the markets where risks are exchanged (Section 8.3). However, the
equilibrium approach to the assessment of risk premiums also has its limits, which
are discussed in Section 8.4

8.1 SOLVING THE $T. PETERSBURG PARADOX

This chapter examines the methods used by economists to value risks in isolation—
that is, outside the magic world of complete markets where valuations can be
deduced from market prices. The difficulties of valuing risks outside this magic
world are well-illustrated by the St. Petersburg paradox, proposed in the eighteenth
century by Nicolas Bernoulli and solved by his cousin Daniel Bernoulli. Consider
the following lottery: Draw a coin several times, until the fiest head is obtained.
If n draws have been necessary (which means that [n — 1] successive tails were
obtained before the first head), then the lottery gives a prize of 2" ducats. The
question asked by Bernoulli is: How much should a rational decision maker value
the right to participate in such a lottery? A little introspection shows that this
number should not be much higher than a few ducats. However, because the
probability of winning 2" ducats is exactly 5],;, the expected value' is infinite:

E(gaiu)=ze)+Gx4)+(-é-x8)+-~-=+oo.

Thus, there seems to be contradiction between the most natural criterion that
can be used to value a lottery (the expectation or actuarial value of the gains) and
what common sense would recommend.

Among the different solutions imagined to solve this paradox, the most reason-
able was offered by Daniel Bernoulli, and axiomatized much later by Von Neumann
and Morgenstern. It consists in computing the expected utility of gain, a method
we now explain.
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Bernoulli proposed to solve the St. Petersburg paradox by introducing psycho-
fogical aspects. He claimed that the {marginal) satisfaction of winning one more
ducat was inversely proportional to the amount already won, leading him to mea-
sure the total satisfaction (or utility as it is now called) of winning x ducats by a
quantity that is proportional to the integrak
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which is equal to log x, the logarithm of x.

With a logarithmic utility, the maximum price one should be ready to pay for
participating in the St Petersburb lotrery is exactly 4 ducats. Indeed, the expected
utility of this lottery is equal to:?

1 i 1 :
E]0g2—|—-4~10g4+--»—27§0g2”+---:10g4.

Now, if #(x) = logx, we can write
Eulgain) = uld).

Thus, an investor characterized by a logarithmic utility has the same utility
by participating in the St. Petersburg lottery or by holding exactly 4 ducats with
probability 1,

In 1944, Von Neumann and Morgenstern developed an axiomatic justification
of a more general criterion, which allows one to account for the specific charac-
teristics of the decision maker, Von Neumann and Morgenstern proposed to allow
any increasing function u(x) to represent the utility of winning x ducats (or dollars
to make it more modern). u(.) is called the Von Nenmann Morgenstern (in short,
VNM) utility function of the decision maker.

It turns out that when u is concave, the expected utility of any lottery ¢ is always
smaller than the utility of the expectation of this lottery:

i concave = Eul(f) < n(€L).

This is the risk aversion property: A decision maker with preferences associated
with a concave VNM utility function always gains by replacing 2 lottery £ by

BOXS8.1 B The Expected Utility Criterion

To any increasing function, w, one can associate a ranking > among lotteries
(represented by random variables ¢1,¥5 characterizing the associated gains):

U > by & En(l)) = Eulfa)

Loteery £} is preferred to lottery £ if and only if the expected utility of £] is greater
than the expected utility of f.
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BOX 8.2 B The Risk Aversion Property

For any concave increasing VINM utility function, #, and any lottery, £, with a finite
expectation ££, the expected utility issmaller or equal to the utility of the expectation:

Eu(l) < u(EL).

This means that the decision maker prefers a deterministic payment equal to Elto
the stochastic payment ¢.

a non-random payment equal to the expectation of £. Without risk aversion of
policyholders, insurance would not be a viable economic activity. Suppose, indeed,
that the lottery £ represents the difference between an individual’s wealth W and
sorne insurable loss x:

The expectation of £ equals the difference between the policyholder’s wealth
W and the actuarial premium P = £(x} associated with the insurance of x. The
insurance of this loss is a viable economic activity when the policyholder is ready
to pay at least P to get rid of x:

(W —E(X) = Eu(W —3).

This is only guaranteed when u is concave.
In the polar case where u is convex, the reverse inequality is satisfied: for any
convex function u and any lottery £, we have that

Eu(l) = u(&d).
In this case, the decision maker is eager to take fair bets—that is, prefers any lottery
£ to a non-random payment equal to the expectation of £.

8.2 CERTAINTY EQUIVALENT

For a given lottery {characterized by a random gain £) and a given decision maker
{characterized by a VNM utility function u(-)), the certainty equivalent (CE) is
defined as the amount of money that gives the same utility to the decision maker
{DM in the sequel) as participating in the lottery:

u(CE) = Eu(f).

In the example of the St. Petersburg lottery and the logarithm utility (n(x) =
In x), the certainty equivalent is easy to obtain because we have seen in Section 8.1
{see footnote 2) that £In(%) = In4. Thus,

In(CE) =1In4,
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which gives CE = 4. An agent having a logarithmic utility is ready to pay up to 4
ducats for participating in the St Petersburg lottery.

Other results are obtained with alternative specifications of 1. One of the
most popular of these alternative specifications is the exponential utility: u(x) =
t [1 —exp— !] where + > 0 is a parameter that characterizes the risk tolerance
of the decision maker. It is very popular because, when coupled with normality
assumption on £, it gives raise to simple, explicit formulas. Indeed, when £ follows

a normal distribution with mean y and variance o', one obtains:

I u a?
£ (exp—?) =exp (—T—i— ﬁ)

N ; ' po o’
Eult)=t 1_5(‘”‘1)"}") zr[i_e}{p(_'f 2,1)}
0.2
~(n-%),

This gives a simple formula for the certainty equivalent:

ol
= (%)

This formula is equivalent to the mean variance criterion presented in the
Chapter 9. However the expecied utility criterion is more flexible, because it
can cover situations where the risk tolerance index of the decision maker varies
with his wealth or with other parameters that may change in relation with the
risks incurred. For firms, this will lead to the notion of shareholder value function,
which is presented in Chapter 12 of this book. The VNM utility function is the
equivalent for individuals of the shareholder value function for corporations. We
now present an application of the VNM utility function to insurance decisions.

Therefore:

APPLICATION: TO BUY OF NOT TO BUY INSURANCE?

Consider an individual or a corporation confronted with a risk of fire: With some
probability p, a fire can occur, causing loss L. This decision maker can fully insure
this risk by paying a premium P, but he can also retain the risk. In the first case,
his utility is u(W — P), where W denotes the policyholder’s initial wealth. In the
second case, his expected utility is

Eu=pu(W — LY+ (1 -~ p)u(W).

In the absence of insurance, the certainty equivalent of the losses is defined
implicitly by

(W — CE) = pu(W — L) + (1 — pyu( W), (8.1)
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The rational decision is to buy insurance whenever P < CE, which can be
interpreted as the maximum acceptable premium.

Numerical Example:

probability of fire p=10.5%
loss in case of fire L =3%$160,000
individual’s wealth W = $250,000
utility function ulx) = ./x.

‘We have by definition (8.1):

w(W—CE)=vW—=CE=p/W—L+(1—p)/W
= 0.005+/90, 000 4 0.995+/250, 000 = 499,
Thus,
CE = 250,000 — (499)% = 999.

The maximum premium that is acceptable for the customer is thus CE = 999.

Note that because of risk aversion (which is captured by the property that
u(f) = /€ is concave), the actuarial premium P = 0.005 x (160,000) = 800 is
lower than CE. Therefore, any insurance premium P in the interval [800, $99]
will be “viable” for the insurer, in the sense that it will attract the customer and
simultaneously cover the expected losses of the insurer.

8.3 MARKETS FOR EXCHANGING RISKS

With the development of financial markets, the risks specialists of large corpo-
rations now have access to several market solutions for exchanging their risks,
particularly the large ones. This section starts by a description of some of these
market solutions and then relates their functioning to the theoretical model of risk
exchange developed by Arrow and Borch.

8.3.1 The Practice

A first example of a market solution for exchanging risk is the Catastrophe Risk
Exchange (CATEX) created in New York in 1996 (see Box 8.3). Others are derivative
products like catastrophe options and catastrophe bonds traded in the Chicago
Board of Trade (CBOT).

The CBOT has a long history in the derivatives industry. It was created in
1848 to provide an effective mechanism for buying and selling physical agri-
cultural commodities. In 1992, just after Hurricane Andrew, the insurance and
re-insurance industry was looking for new ways of managing and covering catas-
trophe risks. Several organizations, including the CBOT created new products
such as cat options and cat bonds. These products allowed significant expansion
of the capacity of the re-insurance market.
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BOX3.3 B CATEX

Catastrophe Risk Exchange {CATEX) is a technology solution provider who has
been authorized (and is regulated) by the New York Insurance Department as a
re-insurance intermediary since 1996.

CATEX provides insurance and re-insurance firms with an instrument to manage
maore efficiently their portfolio of risks by offering an Internet-based transaction
system to exchange catastrophe risks. CATEX is a sort of electronic marketplace
on which insurance companies can list risks that they are eager to cede or to swap
against other risks. In the first case, the format is a classical re-insurance treaty, in
the second, it is a re-insurance swap transaction.

The standard unit of risk is $ 1 million. As an example, an insurance company
will increase the diversification on its portfolio by exchanging 15 units of Florida
windstorm risk against 20 units of California carthquake risk.

Beside an enhanced management of catastrophe risks, CATEX also reduces
transaction costs through its standardized technology solution that improves the
administration of re-insurance treaties. This is a significant added value to the mar-
ket, as reduced costs of administration may develop the number of transactions and
create a more efficient market.

CATEX is not the only organization providing this type of services: the Bermuda
Commodity Exchange has been developed with the same objective.

In 1995, CBOT proposed a new contract based on an index for insured loss
developed by the Property Claims Service (PCS). These cat options are available for
nine regions and states in the United States: National, East, Southeast, Northeast,
Midwest, West Florida, Texas, and California.

BOXg.4 B Catastrophe Bonds

They allow the securitization of Habilities linked to catastrophe risks:

s A special purpose vehicle (SPV) provides re-insurance to the insurer (excess loss
over some threshold £%).

*  SPV issues a bond (called a catastrophe bond). The payment promised by this
bond is indexed on the losses £ of the insarer.!

= If the losses € of the insurer are smaller than some predetermined threshold
&% SPV repays the full value of the bonds B.

* 1f € > ¢*: the SPV only pays { — £* to the insurer and B — (¢ — L%) to
bondholders.

In this way, re-insurance risk is fully transferred to bondholders.
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Insurance and re-insurance companies can buy the cash settled options to com-
plernent traditional re-insurance treaties; PCS options are traded on catastrophes
trigger to protect insurers against catastrophe above a certain level.

8.3.2 The Theory

The actuary Karl Borch and the economist Kenneth Arrow have investigated the
theoretical question of how risks should be shared within a community of individ-
uals. This is an interesting application of the expected utility framework. Consider,
for example, two individuals, indexed 7 = 1,2 and characterized by VNM utility
functions ) (-} and 12(-). To simplify notation, suppose that there are only two
states of the world {1,2}, with probabilities p|, p3.

Individuals’ wealths are W) and W, but individual 1 loses L in state 1 and
individual 2 loses L, in state 2.

Suppose now that risks can be traded on an exchange at prices Py, P, This
means that individual i can receive 8, § in state s in exchange for an unconditional
payment P8 $ (in both states).

For an insurance position 8;,6;, individual i obtains the following expected
utility:

Ui = pris (W) + 61 — P16y — Pa6s) + pau; (W5 + 65 — PL) — Prth),
where W) and W} are the “before trade” wealths given in Table 8.1. The optimal

insurance position 61,8 is obtained by maximizing U;. It is characterized by the
first-order conditions (zero derivatives):

au; ; . ;
7 P Wit — P = pau{Wi) Py =0,

and
d Ui ’ 1
T = (Wi Pa+ prtf(Wia) [1 - P21 =10,
2
where W;; and W;, represent the “after-trade” wealths of individual i:
Wi = W2+ 6, — P16 — P26y
Solving for P, and P>, we obtain:
_ pri;(Wi)
=
P (Wi + pra(Wi)

for all 4,

TABLE 8.1. Before Trade Wenlths

States Wealths Endividual 1 Individual 2

State ] Wy -1 Wh
State 2 W Wy~ L
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and similarly,

) p2(Wa)

y == - v for all 1,
Pri(Wi) -+ pai;(Wia)

Thus, the optimal position taken by each individual on the risk exchange is such
that the marginal rate of substitution between incomes in the two states is equal
to the ratio of prices:

pu{Wn) Py

= fi i=1,2, 8.2
(W) P, (8.2)

where W;s denotes the after-trade wealth of individual 7 in state 5. The intuition
for this can be established by contradiction: if % was, for example, strictly less than
this marginal rate of substitution, individual 1 could increase his expected utility
by buying a little more of insurance against risk 1 and a little less of insurance
against risk 2.

Equation (8.2) implies a very important property: after-trade wealths of risk-
averse individuals are necessarily co-monotonic—that is, they move in the same
way in the different states. If, for example, Wi > W), (individual Us after trade
wealth is higher in state 1) then by concavity of u; we have that (W) < uf (Wi2)
(marginal utility is higher in state 2), and therefore, by the above property:

(W) pP <1
u (Wiz)  piPs
Now the analogous inequality is also valid for individual 2:

n(Wa)  prPy
uy(Waa)  piPs

This implies (by concavity of 1) that Wa; > Waa: individual 2’s after-trade wealth
is also higher in state 2.

8.3.3 Diversifiable Risk

Consider first the case where the possible losses of the two individuals are equal.
This means L = Lz = L, so that there is no aggregate risk. Total wealth is constant
across states:

Wi+ Wo = Wi+ Woa = W) + Wh — L.

The co-monotonicity property established above implies that after-trade
wealths of individuals must be constant across states: if, say, W), was strictly
less than W)z, this would be true also for individual 2 and by aggregation
Wi + Wa) < Wia + Was. This would contradict the property that total wealth is
constant across states.

After-trade incomes of individual 1 are thus

Wh=W,—L+6 -0 P +thP in state 1,



112 @ THE CASE OF INCOMPLETE MARKETS

TABLE 8.2. After Trade Wealths When Risks Are

Diversifiable
{/
N Individual 1 Individual 2
State | W) —pL Wy —plL
State 2 W) —pilL Wa—pal

and
Wh=W —&H-P+6:h in state 2.
Equality of these two incomes implies that
O +th=L
Moreover, buying one unit of each contract gives $1 for sure, which implies that
P+P=1
Now, using that W) = W), equation (8.2) gives

h_p
Py
Thus, the ratio of prices % is equal to the ratio of probabilities ’;—') Because
Pi+-Pr=p+p=1it must be that Py = py and Py = py. We see that in this case
(the case of fully diversifiable risks) market prices of risks are just equal to their
probabilities. Moreover, using all these properties, we can compute after-trade
wealths:

Wi =Wp =W, -pl,
and similarly,
Wy == Wya = Wiy — po L.

This arrangement can be obtained by an insurance mutuality where individual
risks are pooled. Each individual is completely insured, in exchange for the pay-
ment of an actuarial premium, py L for individual 1, and p, L for individual 2 (note
that the mutuality principle does not imply that premiums are necessarily equal
across individuals: if p) # pa, then premiums are different).

8.3.4 Aggregate Risks

In more general cases, perfect diversification cannot be attained: some aggregate
risk remains. Assume, for example, that the loss L; of individual 1 in state 1 is
smaller than the loss L, of individual 2 in state 2. Thus, aggregate wealth is smaller
in state 2 {which we interpret as a recession) than in state 1 {which we interpret as
a boom).
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In this case, the co-monotonicity property implies that after-trade wealths of
both individuals are also smaller in state 2 than in state 1:

Wi = Wi and Wa > Waa.
Then prices of risks are not equal to their probabilities:

Py py u{(Wi) il

Py ppuf(Wa)  p
Because Py + Py = p) + p2 = 1, this implies that Py < p) and P > ps.
The market price of risk 1, which is also equal to the risk adjusted probability

of state 1, is lower than the historical probability p; of state 1 {the reverse is true
for state 2).

Property 8.1. When there is some aggregate risk, the risk neutral probability
measure® (P}, Py) gives more weight to unfavorable events (like a recession) and
fess weight to favorable events (like a boon) than the “historical” probability measure
(p1,p2). In other words, the risk neutral measure is pessimistic.

Finally, optimal risk sharing implies that every individual bears some fraction of
aggregate risk: no one is perfectly insured, More precisely, the fraction of risk borne
by each individual has to be proportional to the risk tolerance of the individual. To
get simple formulas, we consider the case where utility functions are exponential:

x
ui(x) =1 l:l — expww;:] )
I
where t; > 0 is the risk tolerance factor of individual i. Marginal utilities are given
by i(x) = exp —w;‘:
In this case, after-trade wealths W can be computed explicitly, because
marginal rates of substitution are easy to compulte

(W) [W,‘z - Wi }
—o = eXp | e/ |-
u(Wia) f
These marginal rates of substitution must be equal across individuals. Thus, we
must have:
Wi — Wiy Wy — Wy
h - 43 ’

This means that the loss incurred by individual 7 in case of a recession (state 2)
is proportional to ;. Because the total loss (Wh + Wy ) — (W2 + Wh») is equal to
Ly — Ly, we see that

I
Wiy — Wiz = ——(Ly ~ L1),
fy -+ b2
d Wy — W= —2(ly— L)
an 21 22_r|+rg 2 1)-



Il4 = THE CASE OF INCOMPLETE MARKETS

TABLE 83. Aggregate Risks, After Trade Wealths

Incomes . .
N Individual | Individual 2

s .nL _ L
State | Wy 'EHI:Q Wa ?i*_w‘f}é-

s, — Al _ bl
State 2 W, nFh Wa nTh

Property 8.2.  Optimal risk sharing implies that aggregate risk is allocated to each
individual in proportion to his risk tolerance.

The efficient allocation of risk can be obtained through a co-insurance arrange-
ment, whereby individual 1 transfers a fraction — of his risk to individual 2 and

ity
accepts a fraction E—;I-T of individual 2’s risk:
— _al
Wiy = Wi - il
— _ Ntz
Wiz = W) — Ak

Note that after-trade wealths of all individuals are lower in state 2 than in
state 1 (this is because Ly > L;); aggregate risk is borne by all. Howevey, if 1) < #,
individual 1 is less risk-tolerant than individual 2 and thus bears less risk.

Rule 8.1. Optimal Risk Sharing

The expected utility criterion gives a useful methodology for deciding how to use
market instruments for sharing risks among firms or individuals. Two very different
cases have fo be distinguished: diversifiable risks and aggregate risks.

A risk is diversifinble if it does not impact the total resources of the communnity.
This type of risk can be completely eliminated by mutualization: each individual fully
transfers his own risk to the exchange, and prices of risks only reflect their actuarial
values (no risk premium). For this type of risk, the risk neutral measure coincides with
the historical probability measure.

By contrast, an aggregate risk {like the risk of a recession) has a non-predictible
impact on the total resources of the community. This type of risk has to be shared by
all the members of the community in proportion to their risk tolerance. Individuals
or firms with an exposure that is larger than their risk tolerance (relative to the total
risk tolerance of the community} are net sellers of the risk on the exchange, whereas
individuals or firms with an exposure that is lower than their risk tolerance are net
buyers of the risk.

8.4 THE LIMITS OF THE EQUILIBRIUM APPROACH

8.4.1 The Case of Incomplete Markets

When financial markets are complete, risks are optimally allocated, and RNV
works. A sophisticated investor who knows the economic fundamentals can, in
principle, compute the risk adjusted probability measure: multiplying historical
probabilities by marginal utilities of consumption and scaling them to get a prob-
ability measure. But, of course, it is much simpler to deduce the risk-adjusted
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measure from observed assets prices: this is the RNV methodology, which is
equivalent to, but much simpler than, the equilibrium approach.

Everything breaks down when markets are not complete: risk allocation is not
necessarily optimal and risk premiums cannot be deduced from the mere observa-
tion of asset prices. They depend in a complicated way on economic fundamentals.
Chapter 9 explores the only case where risk premiums are easy to compute, even
when markets are incomplete: if the joint distribution of all asset returns is Nor-
mal, the Capital Asset Pricing Model (CAPM) is indeed valid, and risk premiums
are proportional to one simple factor: the regression coefficient of the asset return
on the market return (the beta of the asset). Unfortunately, outside this Normal
world, there is no simple way to compute risk premiums.

Of course, it could be argued that markets are “approximately” complete, in
which case the RNV approach would be “approximately” valid. Unfortunately,
there is a lot of indirect empirical evidence suggesting that financial markets are
far from being complete. For example, market completeness would imply optimal
risk sharing, and thus co-monotonicity of after-trade incomes. Recent crises tend
to exhibit a different pattern, whereby some investors make a lot of money, whereas
the majority of others loses: co-monotonicity is violated, More generally, many
economists consider that financial markets sometimes magnify real shocks instead
of dampening them, which is also a clear symptom of market incompleteness.

8.4.2 Knightian Uncertainty and the Ellsberg Paradox

The expected utility criterion has an important drawback: it does not fit very
well the observed behavior of individuals who are uncertain about the (historical)
probability distributions of risks.

The psychologist Elisberg is famous for organizing the following experiment:
individuals are asked to select between two urns containing black and white balls
and then to draw one ball from the urn they have selected. The first urn contains
the same numbers of black and white balls. The content of the second urn is
uncertain. [n the first experiment, individuals are told that they will receive a prize
if they pick up a black ball. In the second experiment, it is the reverse: they receive
a prize if they pick up a white ball. Asked to select one urn in each experiment,
a great majority of individuals select the first urn (the one with a 50% chance to
win) in both cases.

This seems natural but happens to be totally incompatible with the expected
utility framework. Indeed, in this framework, each individual is supposed to form
an expectation, p, of the frequency of black balls in the second urn. An individual
who behaves like an expected utility maximizer will always select different urns
in the two experiments (independently of his VNM utility function). If p > 1/2,
he should select the first urn in the first experiment and the second urn in the
second experiment. If p < 1/2, the converse is true. When p = 1/2, he should
be strictly indifferent. None of these cases can explain the observed behavior of
the majority of individuals. This observed behavior can only be explained by
uncertainty aversion: most individuals prefer a situation where the distribution or
risks is known to a situation where the distribution of risks is uncertain.
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To capture the intuition behind Ellsberg’s results, assume, for example, that
individuals hesitate between three scenarios:

Scenario 1: The second urn also contains the same numbers of black balls and
white balls.

Scenario 2: The second urn contains more black balls.

Scenario 3: The second urn contains more white balls,

Suppose now that the individual always considers the worst-case scenario: he
aims at maximizing the minimum of the probabilities of gain in the three scenarios.
It is clear then that he will select the first urn {which guarantees a probability of
gain of 50%) in both experiments. This is because, in both experiments, there is a
scenario that gives a strictly smaller probability of gain with the second urn.

8.4.3 When Markets Stop Functioning

The subprime crisis has also shown that some well-established markets can just
stop functioning in some circumstances. This is the case in the example of the
Asset-Backed Commercial Paper (ABCP) market that was a vital source of short-
term financing for many firms and that completely dried up in the middle of
the subprime crisis. One explanation often provided by economists is adverse
selection: buyers had less information than sellers about the quality of the paper
being sold. The following simple model, adapted from Akerlof’s famous paper
(*The Market for “Lemons™: Quality Uncertainty and The Market Mechanism”
Quarterly Journal of Economics 84(3), 488-500), illustrates how adverse selection
can provoke the interruption of markets.

Consider a financial market where banks have the possibility to sell some of their
assets to investors. The quality g of each asset, measured by the expected present
value of its future cash flows, is known to the seller (the bank) but not to the buyers
(the investors). Buyers only know the statistical distribution of the quality of asset
being securitized. We are going to show that such markets are fragile: When adverse
selection becomes too strong, these markets can stop functioning.

The maximum price P that buyers are ready to pay for each of these assets (that
they cannot distinguish) is indeed the average quality of the assets on the markets:

P = £(qg|q is on the market).

Suppose now that banks have access to a new investment opportunity, char-
acterized by an expected present value of (1 -+ R} per unit of investment. If they
can securitize one of their assets at price P and reinvest the proceeds into this new
opportunity, they obtain an expected present value of P(1 4+ R}, to be compared
with g if they keep their original asset. Thus, banks are ready to sell their assets
for a price below their quality (this is the economic justification of securitization),
but there is a lower limit; the minimum price at which a bank accepts to securitize
an asset of quality g is:

q

Prin(g) = m < {-
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If g was observable by buyers, then the market price would fully reflect it:
P=q,

and all gains from trade would be exploited:

T _ for all q.
1+ R

However, when g is not observable by buyers, the sellers might refuse to
securitize some of their assets. This happens when

P=g> Pnin(g) =

q> P(1+R).

By contrast, the banks are always willing to securitize their low-quality assets,
such that:

q<P(1+R).

This is the essence of the adverse selection phenomenon: a (securitization) market
always attracts the lowest quality sellers (banks). In general, trade is not efficient:
the good quality assets are retained, and the banks that hold them cannot refi-
nance. Sometimes the market can even stop altogether. To see this, assume that
the statistical distribution of asset qualities is uniform on some interval [go, g ].
When ¢ — qo i$ small (mild adverse selection), all assets are securitized (efficient
trading) at price P = %(qg + gp). This happens if and only if P > %, which is
equivalent to gy < C[U"{-“_E"%.
In the opposite case:

i+R
1-R

q > g

3

only the assets with quality in the interval [qo, P14 R)] are put on the market,
and the securitization price P is equal to the average quality of the assets on the
market:

P=—=[q+P(1+R)],

B |

which allows to determine the equilibrium price:

_ o
T1=R

and the volume of trade
2q0R
iR

Suppose now that the minimum quality of assets suddenly deteriorates: ¢
becomes zero, Then the volume of trade also becomes equal to zere: the market
stops functioning altogether. The presence of very low-quality assets that cannot
be distinguished from the others is enough to precipitate the complete halt of
securitization markets.

V=Pl+R)—qg=



